

Edexcel A Biology A-Level Core Practical 11

Investigate photosynthesis using isolated chloroplasts (the Hill reaction).

🕟 www.pmt.education

▶ Image: Second Second

Dehydrogenase is an **enzyme** found in plant chloroplasts that is crucial to the **light dependent stage** of photosynthesis. In the light dependent stage, **electrons** are accepted by **NADP**. This reaction was discovered in 1938 by Robin Hill and thus is often called the Hill reaction. **Dehydrogenase** catalyses this reaction. When a **redox indicator dye** is present, such as **DCPIP** (which turns from **blue to colourless** when it is reduced), electrons are accepted by this instead.

Equipment

- Leaf sample
- Scissors
- Mortar and pestle (cold)
- Nylon mesh
- Filter funnel
- Centrifuge
- Centrifuge tubes
- Ice-water-salt bath
- Glass rod
- Measuring cylinder
- Beaker
- Pipettes
- Bench lamp
- Buffer
- Isolation medium
- DCPIP solution

Method

- 1. **Remove stalks** from leaf samples. Cut into small sections. Grind sample using a pestle and mortar and place into a **chilled isolation solution**.
- 2. Place several layers of muslin cloth into funnel and wet with isolation medium to filter sample into a beaker.
- 3. Suspend the beaker in an ice water bath to keep sample chilled.
- 4. Transfer to centrifuge tubes and centrifuge at high speed for 10 minutes. This will separate chloroplasts into the pellet.
- 5. Remove **supernatant** and add pellet to fresh isolation medium.
- 6. Store isolation solution on ice.
- 7. Set the colorimeter to the red filter. Zero using a cuvette containing chloroplast extract and distilled water.

- 8. Place test tube in rack **30cm** from light source and add **DCPIP**. Immediately take a sample and add to cuvette.
- 9. Measure the **absorbance** of the sample using the colorimeter
- 10. Take a sample and measure its absorbance every 2 minutes for 10 minutes.
- 11. Repeat for different distances from lamp up to 100 cm. This will vary the light intensity.

NB: This experiment should be done in a **darkened room** to make results more reliable. The sample should not be put too close to the lamp as **temperature** may affect results.

Hazard	Risk	Safety Precaution	In emergency	Risk Level
DCPIP	Irritant to skin and eyes; may cause staining	Wear eye protection	Wash from skin/eyes immediately using cold water	Low
Biohazard	Allergies; soil bacteria; contamination	Wash hands after use	Seek assistance	Low
Lamps	Temporary damage to eyes	Do not look directly at lamp	Wait for afterimage to disappear; seek appropriate assistance if needed	Low
Electrical appliances	Liquids near electrical appliances	Do not touch lamp/wires with wet hands; keep liquids away from lamp/wires	Seek assistance	Low

Risk Assessment

Graph

• Plot a graph of **absorbance** against **time** for each distance from the light.

www.pmt.education

Conclusion

- As the light intensity **decreases**, the rate of photosynthesis also **decreases**. This is because the lowered light intensity will **slow the rate of photoionisation** of the chlorophyll pigment, so the overall rate of the light dependent reaction will be slower.
- This means that less electrons are released by the chlorophyll, hence the DCPIP accepts less electrons. This means that it will take longer to turn from blue to colourless.
- When the DCPIP is blue, the absorbance is higher. The rate at which the absorbance decreases can therefore be used to determine the activity of the dehydrogenase enzyme. A higher rate of decrease, shown by a steep gradient on the graph, indicates that the dehydrogenase is highly active.